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Connectivity query processing is a fundamental problem in graph processing. Given an undirected graph and

two query vertices, the problem aims to identify whether they are connected via a path. Given frequent edge

updates in real graph applications, in this paper, we study connectivity query processing in fully dynamic

graphs, where edges are frequently inserted or deleted. A recent solution, called D-tree, maintains a spanning

tree for each connected component and applies several heuristics to reduce the depth of the tree. To improve the

efficiency, we propose a new spanning-tree-based solution by maintaining a disjoint-set tree simultaneously. By

combining the advantages of two trees, we achieve the constant query time complexity and also significantly

improve the theoretical running time in both edge insertion and edge deletion. Our performance studies on

real large datasets show considerable improvement of our algorithms.
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1 Introduction
Given an undirected graph, the connectivity query is a fundamental problem and aims to answer

whether two vertices are connected via a path. The connectivity query usually serves as a funda-

mental operator and is mainly used to prune search space in most applications. For example, the

algorithms to compute paths between two vertices are generally time-consuming. We can termi-

nate the search immediately if two query vertices are not connected, which avoids unnecessary

computation. The problem is driven by a wide range of applications in various fields. For example,

the problem helps in identifying whether data packets from a device can reach their destination in
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Algorithms Ours D-Tree
Query processing 𝑂 (𝛼) 𝑂 (ℎ)
Edge insertion 𝑂 (ℎ) 𝑂 (ℎ · nbrupdate)
Edge deletion 𝑂 (ℎ) 𝑂 (ℎ2 · nbrscan)

Table 1. Comparing the average complexity of our method with state-of-the-art. 𝛼 is a small constant (𝛼 < 5).
ℎ is the average vertex depth in the spanning tree. nbrupdate is the time to insert a vertex into neighbors of a
vertex or to delete a vertex from neighbors of a vertex. nbrscan is the time to scan all neighbors of a vertex.

a communication network. In biology, testing connectivity between two units in a protein-protein-

interaction network can help in understanding the interactions between different components of

the system [17]. For example, existing studies [15] trace contacts during the COVID-19 epidemic by

modeling an association graph among the high-risk population, the general population, vehicles,

public places, and other entities. Two individuals are considered related if there is a path connecting

them within a short time window that satisfies certain patterns. Our method can effectively exclude

a suspicious vertex pair if they are not connected within the specified time window.

Real-world graphs are highly dynamic where new edges come in and old edges go out. The

connectivity between two vertices may change over time. Given the up-to-date snapshot, the

connectivity query can be addressed by graph search strategies such as breadth-first search (BFS)

and depth-first search (DFS). However, these online search algorithms may scan the whole graph,

which is excessively costly for large graphs. Instead of online query processing, a straightforward

index-based approach is to maintain each connected component as a spanning tree, where two

query vertices are connected if they have the same tree root. We may merge two spanning trees for

a new edge insertion or split a spanning tree for an old edge deletion. Index-based methods have

been investigated in the literature. [27] maintains an Euler tour of a spanning tree, named ET-tree.

[6, 7] improves the ET-tree by terminating early when looking for replacement edges. Holm et al.

proposed a new method named HDT [8, 9], which made the complexity of insertion and deletion

𝑂 (log2 𝑛). [10] further reduced the time complexity slightly to 𝑂 (log𝑛(log log𝑛)2).
The State of the Art. To improve the connectivity query efficiency practically, a recent work [3],

named D-Tree, maintains a spanning tree in dynamic graphs, and the spanning tree is represented

by maintaining the parent of each vertex. To test the connectivity of two vertices, we search from

each vertex to the root and identify whether their roots are the same. The query time depends

on the depth of each query vertex, i.e., the distance from the query vertex to the root of the tree.

Their main technical contribution is to develop several heuristics to maintain a spanning tree with

a relatively small average depth. For edge insertion, a non-tree edge is a new edge that connects

two vertices in the same tree, and a tree edge is a new edge that connects two vertices in different

trees. To insert a non-tree edge (𝑢, 𝑣), the D-Tree replaces one existing tree edge with the new

edge when the depth gap of 𝑢 and 𝑣 is over a certain threshold. To insert a tree edge (𝑢, 𝑣) into an

index, the D-Tree always merges the smaller tree into the bigger tree. Assume that the spanning

tree of 𝑢 is the smaller one. They rotate the tree (i.e., keep the same tree edges but change the

parent-child relationship of certain vertices) so that𝑢 becomes the new root. Then, the two trees are

connectged by assigning 𝑢 assigned as the child of 𝑣 . To delete a tree edge (𝑢, 𝑣), the spanning tree

is immediately split into two trees 𝑇𝑢 and 𝑇𝑣 for 𝑢 and 𝑣 , respectively. Assume that the size of 𝑇𝑢 is

smaller. The D-Tree picks 𝑇𝑢 and searches non-tree neighbors of each vertex in 𝑇𝑢 to find non-tree

edges that can reconnect the two trees. The D-Tree picks the edge that connects to the shallowest

vertex in 𝑇𝑣 and reconnects two trees. Nothing needs to be done when deleting a non-tree edge.

When scanning vertices in both tree updates and query processing of the D-Tree, they may rotate

the tree if the rotation results in a smaller average depth.
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Drawbacks of D-Tree.Much improvement space is left for the D-Tree. We summarize the main

drawbacks as follows.

(a) Poor update efficiency. In D-Tree, many efforts are spent on reducing the average depth in tree

updates at a high price. Especially in tree-edge deletion, they search non-tree neighbors of

all vertices in a sub-tree to identify the replacement edge. The search space can be very large

which is not scalable for big graphs. In addition, the D-Tree maintains complex structures to

search the replacement edge. Maintaining them incurs extra costs when trees are rotated.

(b) Poor query efficiency. In the D-Tree, query processing needs to find the roots of two query

vertices, and the time complexity of query processing is ℎ, where ℎ represents the average

depth of vertices. However, in large-scale graphs, the vertex depth in a spanning tree may be

very large, and the query efficiency can be very low.

Our Approach. Table 1 gives a quick view of the theoretical running time of D-Tree and our

approach. nbrupdate and nbrscan depend on the data structure to maintain non-tree neighbors and

children. If a balanced binary tree is used, we have nbrupdate = log𝑑 and nbrscan = 𝑑 , where 𝑑 is the

average degree. If the hash set is used, nbrupdate can be reduced to a constant value, but nbrscan will
be 𝑑 + 𝑏 where 𝑏 is the number of buckets for a hash set. By comparison, our approach achieves

the almost-constant query time and reduces the time complexity of both insertion and deletion

simultaneously.

We start by considering how to improve the query efficiency in theory. Our idea is inspired

by the disjoint-set data structure which organizes items in different sets. It offers two operators:

Find identifies the representative of a set containing the element, and Union merges two sets. The

structure is commonly identified to achieve the amortized constant time complexity for Find and

Union, which correspond to querying connectivity and edge insertion in our case, respectively.

However, it is hard to handle deletion situations if we only use the disjoint set. When an edge

is deleted only based on the disjoint set, it is not able to identify if the connected component is

disconnected, and we need to compute the connected component from scratch as a result. To achieve

the constant query time complexity while keeping the high efficiency for both edge insertion and

deletion, we maintain a spanning tree and a disjoint set simultaneously and combine the advantages

of two data structures. The spanning tree implementation in our algorithm is called ID-Tree, and

the disjoint set implementation in our algorithm is called DS-Tree.

Spanning Tree Implementation. Our ID-Tree is extended from D-Tree by applying several

modifications for higher practical efficiency. Our results show that our improved version is much

more efficient than D-Tree in all aspects. We make the following improvements in response to

the drawbacks of D-Tree. We apply a new heuristic early-termination technique to derive a better

theoretical bound when searching replacement edges for a deleted tree edge. Given a tree 𝑇 ,

after deleting a tree edge, a subtree 𝑇1 with a larger size and a subtree 𝑇2 with a smaller size are

formed. We find the replacement edge with lowest depth in the small subtree 𝑇2. This allows us to

terminate early and improve the efficiency of searching the replacement edge. In addition, we also

avoid maintaining non-tree neighbors and children for each vertex which reduce the maintenance

overhead but not sacrifice the update efficiency.

Disjoint Set Implementation. To support edge deletion, we implement the children of each tree

vertex in the disjoint set as a doubly linked list. We design a set of operators to delete an item

from the disjoint set in constant time while keeping the constant time of Find and Union. When a

connected component 𝐴 is disconnected into 𝐵 and 𝐶 after deleting an edge, we use our ID-Tree

to identify them (assuming |𝐵 | ≤ |𝐶 |). In the disjoint set, we remove all vertices of 𝐵 from 𝐴 in

𝑂 ( |𝐵 |) time and union all vertices of 𝐵 to create a new connected component. In this way, the time

complexity of updating our disjoint set is bounded by that of the spanning tree.

Contributions. We summarize our main contributions as follows.
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(a) Theoretical almost-constant query efficiency. We propose a new approach to combine the

advantages of spanning tree and disjoint-set tree. The approach achieves amortized constant

query time without sacrificing the time complexity of both edge insertion and edge deletion.

Our final solution is theoretically more efficient than the state-of-the-art D-Tree in all aspects.

(b) Theoretical higher update efficiency. We propose a new spanning-tree structure for higher

updating efficiency in both theory and practice compared with D-Tree. We also propose a new

disjoint-set data structure to handle the edge deletion together with the spanning-tree.

(c) Outstanding practical performance. We conduct extensive experiments on sixteen real datasets

in various settings. The results demonstrate the higher practical efficiency of our algorithms

compared with the state of the art.

2 Preliminary
Given an undirected simple graph 𝐺 (𝑉 , 𝐸), 𝑉 and 𝐸 denote the set of vertices and the set of edges,

respectively. We use 𝑛 and𝑚 to denote the number of vertices and the number of edges, respectively,

i.e., 𝑛 = |𝑉 |,𝑚 = |𝐸 |. The neighbors of a vertex 𝑢 is represented by 𝑁 (𝑢), i.e., 𝑁 (𝑢) = {𝑣 ∈ 𝑉 |
(𝑢, 𝑣) ∈ 𝐸}. A tree 𝑇 is a connected graph without any cycle. Given a tree 𝑇 , 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) denotes
the parent vertex of a vertex 𝑢 in the tree. 𝑑𝑒𝑝𝑡ℎ(𝑢) denotes the depth of the vertex 𝑢, i.e., the

number of tree edges from 𝑢 to the tree root. ℎ denotes the average depth of all vertices in the

tree, i.e., ℎ(𝑇 ) = ∑
𝑢∈𝑇 𝑑𝑒𝑝𝑡ℎ(𝑢)/|𝑇 |. Each tree has only one root. Rotating a tree means keeping

the same set of tree edges but changes the tree root. As a result, the parent of each vertex from

the old root to the new root becomes the child of the vertex. A path 𝑃 = ⟨𝑣1, 𝑣2, ..., 𝑣𝑙 ⟩ in 𝐺 is a

sequence of vertices in which each pair of adjacent vertices are connected via an edge, i.e., for all

1 ≤ 𝑖 < 𝑙 , (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. We say two vertices 𝑢, 𝑣 are connected if there exists a path such that 𝑢 and

𝑣 are terminals. A connected component (CC for short) in a graph is a maximal subgraph in which

every pair of vertices are connected. Therefore, two vertices are connected if they are in the same

connected component.

Definition 2.1. (ConnectivityQuery) Given a graph𝐺 and two query vertices, the connectivity

query aims to determine whether 𝑢 and 𝑣 are connected in 𝐺 .

Problem Definition. Given a graph 𝐺 , we aim to develop an index for processing connectivity

queries between arbitrary pairs of vertices and maintain the index when a new edge is inserted or

an existing edge is deleted.

3 Existing Solutions
3.1 Query Processing in Static Graphs
A straightforward online method for the connectivity query is to perform a bidirectional breath-first

search (BFS) or a depth-first-search from a query vertex. Once meeting the other query vertex in

the search, we identify that two vertices are connected. The online method for one connectivity

query takes 𝑂 (𝑚) time in the worst case, which is hard to be tolerated in large graphs. To improve

the query efficiency, we can index an identifier of the corresponding connected component for

every vertex in a static graph, which takes 𝑂 (𝑛) space. In this way, the connectivity query can be

answered by checking the identifier of two query vertices which takes constant time complexity.

Compared with static graphs, dealing with fully dynamic graphs for efficient connectivity query

processing is much more challenging. For instance, removing an edge may disconnect the connected

component. Certain techniques are expected to identify the connectivity of the original connected

component and disconnect the component index structure accordingly.
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Fig. 1. An example graph and a possible spanning tree.

3.2 Maintaining Spanning Trees
A straightforward index-based solution for connectivity queries in dynamic graphs is to maintain a

spanning tree for each connected component. Given a connected component𝐶 , a spanning tree is a

connected subgraph of 𝐶 including all vertices with the minimum number of edges. The subgraph

is a tree structure clearly. An example graph and its spanning tree are presented in Figure 1. All

tree edges are represented as solid lines, and all non-tree edges are represented as dashed lines.

Given two query vertices, we can locate the root of each vertex by continuously scanning the tree

parent. If the tree roots of two query vertices are the same, they are in the same spanning tree and

the same connected component.

Maintaining simple spanning trees for all connected components is not challenging. For inserting

a new edge (𝑢, 𝑣), nothing needs to be done if two vertices have the same root. We call this case

non-tree edge insertion. Otherwise, they are from different spanning trees, and we need to merge

them. We call this case tree edge insertion. To merge two trees, we pick one vertex 𝑢 of the inserted

edge and rotate its spanning tree𝑇𝑢 to make 𝑢 be the root. Then we can add𝑇𝑢 as a child subtree of

𝑣 in its spanning tree 𝑇𝑣 . For deleting an edge (𝑢, 𝑣), nothing happens if (𝑢, 𝑣) is a non-tree edge.
Deleting a tree edge will immediately divide the spanning tree into two smaller trees. Then we

need to identify if there is another edge connecting the two spanning trees. Once such an edge is

found, we process it as the tree edge insertion.

3.3 The State-of-the-Art
Recently, Qing et al. [3] proposed a solution for connectivity query processing in dynamic graphs.

Their solution is called D-Tree. They maintain a spanning tree with additional properties for each

connected component to improve the average query efficiency. Their method is based on the

following lemmas.

Lemma 3.1. The average costs of evaluating connectivity queries by spanning trees is optimal if
each tree 𝑇 minimizes 𝑆𝑑 (𝑇 ), where 𝑆𝑑 (𝑇 ) is the sum of distances between root and descendants in 𝑇 ,
i.e., 𝑆𝑑 (𝑇 ) =

∑
𝑢∈𝑉 (𝑇 ) 𝑑𝑒𝑝𝑡ℎ(𝑢). [3]

Definition 3.2. (Centroid) Given a spanning tree 𝑇 , a centroid of 𝑇 is a vertex with the smallest

average distance to all other vertices.

Lemma 3.3. The average cost of each connectivity query by spanning trees is optimal if each tree is
1) rooted in the centroid, and 2) a BFS tree, i.e., the distance from every vertex to the root is minimal. [3]
It is already very expensive to maintain just a valid BFS tree or a spanning tree rooted in

the centroid. Therefore, D-Tree develops several strategies to reduce the average depth in tree

maintenance. We summarize them into two categories.

Centroid Heuristic. The centroid heuristic rotates spanning trees for certain cases and aims to

reduce the average depth without changing the tree edges. Specifically, when scanning vertices in

tree updates, they attempt to locate the centroid of the spanning tree and rotate the tree so that the

centroid is the root of the tree. To this end, they observe that given a spanning tree 𝑇 rooted in

its centroid 𝑐 , the subtree size of every child of 𝑐 in 𝑇 is not larger than |𝑇 |/2. Therefore, once the

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 230. Publication date: December 2024.



230:6 Lantian Xu et al.

subtree size of vertex 𝑢 in 𝑇 is larger than |𝑇 |/2 and all children of 𝑢 are not, they identify that 𝑢 is

close to the centroid and make the tree rooted in the new root 𝑢.

BFS Heuristic. BFS heuristics reduce the average depth when updating the tree structure (i.e.,

changing tree edges), which happens in both edge insertion and edge deletion. When it is required

to merge one tree𝑇 into the other tree𝑇 ′, the BFS heuristic pick a vertex 𝑢 in𝑇 that has a non-tree

neighbor 𝑣 in𝑇 ′ with the lowest depth in𝑇 ′. Then it rotates𝑇 to be rooted in 𝑢 and adds the tree𝑇

as a subtree of 𝑣 .

Algorithms of D-Tree.We describe the process of D-Tree below. In addition to maintaining the

parent and the corresponding vertex id for each tree vertex like the spanning tree, D-Tree maintains

the subtree size, children, and non-tree neighbors for each vertex. Subtree size is used for the

centroid heuristic. Children and non-tree neighbors are used to efficiently find a replacement edge

when deleting a tree edge. For query processing, as a by-product of continuously scanning parents

for each vertex, they check if the visited child of the root has over half tree vertices in the subtree.

If so, they apply the centroid heuristic and rotate the tree. Their query time complexity is 𝑂 (ℎ)
where ℎ is the average depth.

For non-tree edge insertion, they check if the depth gap between two vertices 𝑢, 𝑣 of the edge

is larger than 1. If so, they pick one tree edge between 𝑢 and 𝑣 to cut the tree and apply the BFS

heuristic to merge two trees by connecting 𝑢 and 𝑣 . For tree edge insertion, they pick and rotate a

smaller tree and merge it into the bigger one. Note that every time a tree is updated, we need to

update the subtree size for influenced vertices. Meanwhile, we rotate the tree once we meet a vertex

satisfying the centroid property. They also need to maintain children and non-tree neighbors for

each vertex even though they are not used in edge insertion. The time complexity of edge insertion

time is 𝑂 (ℎ · nbrupdate), where nbrupdate is the time complexity to insert or delete an item from the

children set and non-tree neighbors. If a hash set structure is used, nbrupdate can be reduced to a

small constant but much memory will be used for a large number of buckets. If a balanced binary

search tree is used, the running time is 𝑂 (ℎ · log𝑑) where 𝑑 is the average degree.

The tree is immediately split into two trees when deleting a tree edge. They search non-tree

neighbors of all vertices in the smaller tree to find a replacement edge to connect two trees. Given

multiple replacement edge candidates, they apply the BFS heuristic to link the tree to the vertex

with the lowest depth. The time complexity of edge deletion is 𝑂 (ℎ · nbrscan) if non-tree neighbors
of each vertex can be scanned in linear time. Note that ℎ is the average depth and is also the average

subtree size of each vertex in the tree. The dominating cost is to scan non-tree neighbors for all

vertices in the smaller tree. There are still some Euler tour-based existing solutions, such as HDT

[8, 9]. However, as shown in our experimental results, D-Tree is more efficient than HDT. Therefore,

we mainly introduce D-Tree here. We will also introduce some other related works in Section 8.

4 Revisiting D-Tree
D-Tree makes many efforts to reduce the average depth in the spanning tree. However, certain

heuristics yield marginal benefits for the average depth but sacrifice much efficiency as a trade-off.

To improve the overall efficiency, we follow the framework of D-Tree and propose an improved

lightweight version called ID-Tree (Improved Dynamic Tree) in this section. We discuss our imple-

mentations for edge insertion and edge deletion in this section.

4.1 Motivation
Our solution is motivated by the following observations.

Observation 1. Centroid heuristics in query processing of D-Tree may not help with improving
query efficiency.
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As introduced in Section 3.3, D-Tree may rotate the tree in query processing to make the new

root close to the centroid. Even though it just additionally brings constant time complexity, avoiding

unnecessary tree updates may improve the query efficiency. One may suspect that avoiding this

step will increase the average depth, which reduces the average query efficiency to some extent.

We respond with the following lemma.

Lemma 4.1. Given a spanning tree 𝑇 rooted in 𝑢, let 𝑐 be the centroid in 𝑇 and 𝑇 ′ be the tree with 𝑐
as the root and the same tree edges as 𝑇 . We have𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ𝑇 ≤ 2 ·𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ𝑇 ′ where𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ𝑇
represents the largest vertex depth in 𝑇 .

Proof. For any two vertices 𝑢 and 𝑣 in tree 𝑇 ′ with the centroid 𝑐 as the root, their distances to

the centroid 𝑐 must be less than 𝑑𝑒𝑝𝑡ℎ𝑇 ′ (𝑣). Therefore, there must exist a path passing through

𝑐 between 𝑢 and 𝑣 , and the length of this path is less than 2 · 𝑑𝑒𝑝𝑡ℎ𝑇 ′ (𝑣). Therefore, the distance
between any two vertices in 𝑑𝑒𝑝𝑡ℎ𝑇 (𝑣) must be less than 2 · 𝑑𝑒𝑝𝑡ℎ𝑇 ′ (𝑣). □

Lemma 4.1 shows that the theoretical max depth is still well-bounded even if we never rotate

and balance the tree. On the other hand, D-Tree cannot guarantee to always maintain the centroid

as the root. It is a trade-off between the depth and the additional efforts to reduce it. Note that the

depth determines not only the query efficiency. Tree updates can also benefit from low depth since

scanning from a vertex to the root happens in both edge insertion and deletion. Therefore, in our

implementation, we still perform some rotation operations to make the root close to the centroid

but never update the tree in query processing.

Improved Query Processing. Our query algorithm of ID-Tree is called ID-Query. The algorithm
only searches the tree root of each query vertex and identifies if their roots are the same. Our

performance studies show that the average depth of ID-Tree is competitive to that of D-Tree, and

our improved query algorithm ID-Query is more efficient in most real datasets. We will further

eliminate the dependency between the query efficiency and the average depth in Section 6, which

achieves almost-constant query efficiency.

Observation 2. Search replacement edges in processing tree edge deletion of D-Tree is expensive.
Edge deletion in D-Tree takes much more time compared with edge insertion. It is caused by

searching the replacement edge to reconnect trees when deleting a tree edge. Assume a tree edge

(𝑢, 𝑣) is deleted where 𝑣 is the parent of 𝑢. D-Tree searches the neighbors of all vertices in the

subtree rooted by 𝑢 to find all edges that can reconnect the tree. Then they pick one of them based

on certain heuristics. As a result, almost half edges in the graph will be scanned in the worst case.

Our main target is to significantly improve the efficiency of edge deletion without sacrificing the

efficiency of query processing and edge insertion. Our method can terminate searching the subtree

once any replacement edge is found.

Observation 3. Maintaining children and non-tree neighbors for each vertex is expensive.
D-Tree maintains children and non-tree neighbors for finding the replacement edge as mentioned

above. In exchange, the two sets require updating every time we rotate the tree or replace tree edges

which frequently happens in query processing, edge insertion, and edge deletion. Maintaining them

for each vertex is costly. Based on these observations, our implementation ID-Tree only maintains

a subset of attributes in D-Tree for each vertex including:

- 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢): the parent of 𝑢 in the tree;

- 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑢): the size of subtree rooted in 𝑢.

4.2 Edge Insertion
Our improved algorithm for edge insertion is called ID-Insert. Before presenting details, we in-

troduce three tree operators. They are the same as those in D-Tree except excluding updates for

children and non-tree neighbors.
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Algorithm 1: ID-Insert
Input: a new edge (𝑢, 𝑣) and the ID-Tree index

Output: the updated ID-Tree

1 𝑟𝑜𝑜𝑡𝑢 ← compute the root of 𝑢;

2 𝑟𝑜𝑜𝑡𝑣 ← compute the root of 𝑣 ;

/* non-tree edge insertion */

3 if 𝑟𝑜𝑜𝑡𝑢 = 𝑟𝑜𝑜𝑡𝑣 then
4 if 𝑑𝑒𝑝𝑡ℎ(𝑢) < 𝑑𝑒𝑝𝑡ℎ(𝑣) then swap(𝑢, 𝑣);
5 if 𝑑𝑒𝑝𝑡ℎ(𝑢) − 𝑑𝑒𝑝𝑡ℎ(𝑣) ≤ 1 then return;

/* reduce tree deviation */

6 𝑤 ← 𝑢;

7 for 1 ≤ 𝑖 <
𝑑𝑒𝑝𝑡ℎ (𝑢 )−𝑑𝑒𝑝𝑡ℎ (𝑣)

2
do

8 𝑤 ← 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑤);
9 Unlink(𝑤);

10 Link(ReRoot(𝑢), 𝑣, 𝑟𝑜𝑜𝑡𝑣);
11 return;

/* tree edge insertion */

12 if 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡𝑢) > 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡𝑣) then
13 swap(𝑢, 𝑣);
14 swap(𝑟𝑜𝑜𝑡𝑢, 𝑟𝑜𝑜𝑡𝑣);
15 Link(ReRoot(𝑢), 𝑣, 𝑟𝑜𝑜𝑡𝑣);

- ReRoot(𝑢) rotates the tree and makes 𝑢 as the new root. It updates the parent-child relationship

and the subtree size attribute from 𝑢 to the original root. The time complexity of ReRoot() is
𝑂 (𝑑𝑒𝑝𝑡ℎ(𝑢)).

- Link(𝑢, 𝑣, 𝑟𝑜𝑜𝑡𝑣) adds a tree 𝑇𝑢 rooted in 𝑢 to the children of 𝑣 . 𝑟𝑜𝑜𝑡𝑣 is the root of 𝑣 . Given that

the subtree size of 𝑣 is changed, it updates the subtree size for each vertex from 𝑣 to the root.

We apply the centroid heuristic by recording the first vertex with a subtree size larger than

𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡𝑣)/2. If such a vertex is found, we reroot the tree, and the operator returns the new

root. The time complexity of Link() is 𝑂 (𝑑𝑒𝑝𝑡ℎ(𝑣)).
- Unlink(𝑢) disconnect the subtree of 𝑢 from the original tree. All ancestors of 𝑢 are scanned to

update the subtree size. The time complexity of Unlink() is 𝑂 (𝑑𝑒𝑝𝑡ℎ(𝑢)).
We present the pseudocode of the improved edge insertion in Algorithm 1. Most processes are the

same as that of D-Tree. We first conduct a connectivity query to identify if two vertices are in the

same tree. Lines 3–11 apply the BFS heuristic for non-tree edge insertion. When the depth gap

between 𝑢 and 𝑣 is over 1, a major difference from D-Tree is about the strategy of BFS heuristic in

Line 7. D-Tree uses the threshold 𝑑𝑒𝑝𝑡ℎ(𝑢) − 𝑑𝑒𝑝𝑡ℎ(𝑣) − 2 instead of
𝑑𝑒𝑝𝑡ℎ (𝑢 )−𝑑𝑒𝑝𝑡ℎ (𝑣)

2
. To reduce

the average depth, we add half vertices from 𝑢 to its ancestor with the same depth of 𝑣 to the

subtree rooted in 𝑢 (Lines 7–9). Then we add the updated tree rooted in 𝑢 to the children of 𝑣 .

Example 4.2. Figure 2 shows the different strategies of BFS heuristic between D-Tree and our

ID-Tree. We insert a non-tree edge (𝑢, 𝑟 ). We have 𝑑𝑒𝑝𝑡ℎ(𝑢) = 6 and 𝑑𝑒𝑝𝑡ℎ(𝑟 ) = 0. Based on the

strategy of D-Tree, we add 𝑢 together with its three ancestors as a child subtree of 𝑟 , which is

presented in the middle figure. However, based on our strategy, we add 𝑢 together with its two

ancestors as a child subtree of 𝑟 , which is presented in the right figure. The average depth of the

tree is reduced from 1.9 to 1.7 in this example.
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Fig. 2. Non-tree edge insertion in D-Tree and ID-Tree.
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Fig. 4. An example of tree edge deletion for ID-Tree.

For tree edge insertion (Lines 12–14), our process is the same as D-Tree, which merges a smaller

tree into a bigger tree.

Example 4.3. An example for tree edge insertion is shown in Figure 3. After inserting (𝑢, 𝑣), we
reroot the tree rooted by 𝑟𝑣 to 𝑣 and add the updated tree rooted by 𝑣 to the children of 𝑢.

4.3 Edge Deletion
Our improved edge deletion algorithm is called ID-Delete. The pseudocode is presented in Algo-

rithm 2. Similar to D-Tree, we need to search for a replacement edge when a tree edge is deleted,

and we always search from the smaller tree (Line 4). Compared with D-Tree, our strategy to find a

replacement edge is completely different. The general idea is to immediately terminate the search

once a replacement edge is found. We use a queue 𝑄 to maintain all visited vertices. In Line 6, 𝑆

maintains the set of all visited vertices in the subtree of 𝑢. Without children and non-tree neighbors,

we directly search graph neighbors (Line 9) for each vertex popped from the queue. Lines 11–13

are for children. We add them to the queue for further exploration. For each non-tree neighbor 𝑦

(Lines 14–24), we check if 𝑦 is from the different tree by scanning the ancestors of 𝑦 (Lines 16–21).

An optimization here is to terminate the current iteration once we reach a vertex recorded in the

subtree of 𝑢 (Lines 17–19). If 𝑠𝑢𝑐𝑐 keeps positive after all iterations of Lines 16–21, it means we

already reach the root of 𝑦, and 𝑦 belongs to a different tree. As a result, we link two trees via the

edge (𝑥,𝑦) (Lines 22–24). Otherwise, all visited vertices in Line 17 are in the subtree of 𝑢, and we
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Algorithm 2: ID-Delete
Input: an existing edge (𝑢, 𝑣) and the ID-Tree

Output: the updated ID-Tree

1 if 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢) ≠ 𝑣 ∧ 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) ≠ 𝑢 then return;
2 if 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) = 𝑢 then swap(𝑢, 𝑣);
3 𝑟𝑜𝑜𝑡𝑣 ← Unlink(𝑢);
/* reduce the worst-case time complexity of searching replacement edge in

subtree */

4 if 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑟𝑜𝑜𝑡𝑣) < 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑢) then swap(𝑢, 𝑟𝑜𝑜𝑡𝑣);
/* search subtree rooted in 𝑢 */

5 𝑄 ← an empty queue, 𝑄.𝑝𝑢𝑠ℎ(𝑢);
6 𝑆 ← {𝑢};
/* 𝑆 maintains all visited vertices */

7 while 𝑄 ≠ ∅ do
8 𝑥 ← 𝑄.𝑝𝑜𝑝 ();
9 foreach 𝑦 ∈ 𝑁 (𝑥) do
10 if 𝑦 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑥) then continue;
11 else if 𝑥 = 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑦) then
12 𝑄.𝑝𝑢𝑠ℎ(𝑦);
13 𝑆 ← 𝑆 ∪ {𝑦};
14 else
15 𝑠𝑢𝑐𝑐 ← true;
16 foreach𝑤 from 𝑦 to the root do
17 if 𝑤 ∈ 𝑆 then
18 𝑠𝑢𝑐𝑐 ← false;
19 break;
20 else
21 𝑆 ← 𝑆 ∪ {𝑤};

22 if 𝑠𝑢𝑐𝑐 then
23 𝑟𝑜𝑜𝑡𝑣 ← Link(ReRoot(𝑥), 𝑦, 𝑟𝑜𝑜𝑡𝑣);
24 return;

continue to search for the next possible replacement edge. Maintaining all visited vertices in 𝑆

guarantees each vertex is scanned only once for the whole process of searching for replacement

edges.

Example 4.4. A running example of tree edge deletion is shown in Figure 4. In the left figure,

(𝑟,𝑢) is deleted, and the tree is split into two subtrees. We search for the replacement edge from

the smaller tree, which is rooted in 𝑢. Assume that a replacement edge (𝑣,𝑤) is found. We reroot

the smaller tree to 𝑣 and link two trees by connecting (𝑣,𝑤). The right figure shows the final result.

5 Theoretical Analysis

5.1 Edge Insertion

Theorem 5.1. The time complexity of Algorithm 1 is 𝑂 (ℎ), where ℎ is the average depth.
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Proof. Computing the roots of 𝑢 and 𝑣 requires 𝑂 (ℎ) time. For non-tree edge insertion, if the

depth gap between 𝑢 and 𝑣 is less than 1, no other operation is needed; otherwise, an existing

edge needs to be unlinked and a new inserted edge needs to be linked, which also takes 𝑂 (ℎ) time.

For tree edge insertion, the two trees can be linked directly after rerooting, which also takes 𝑂 (ℎ)
time. □

5.2 Edge Deletion
Our strategy to find a replacement edge is simple but efficient in both theory and practice. Even

though we scan graph neighbors for a vertex from the queue, we show that the search space is quite

small by the following lemma. We assume that the distribution of vertices and edges is uniform.

Lemma 5.2. The expected total number of iterations of Line 9 in Algorithm 2 is𝑂 (ℎ), where ℎ is the
average tree depth.

Proof. The sum of the subtree size of all vertices in a tree is equal to the sum of the depth of all

vertices. Therefore, the average subtree size of a vertex can be considered as 𝑂 (ℎ). In Algorithm 2,

we need to traverse tree edges and non-tree edges in the subtree. The tree edges are visited at

most 𝑂 (ℎ) times. For non-tree edges, since the BFS search is always performed on the tree with

the smaller 𝑠𝑡_𝑠𝑖𝑧𝑒 rooted at 𝑢, each non-tree edge has a probability of being the replacement edge

greater than 1/2. Therefore, the expected total number of iterations of Line 9 is still 𝑂 (ℎ). □
Based on Lemma 5.2, we show the time complexity for our improved algorithm for edge deletion.

Theorem 5.3. The expected time complexity of Algorithm 2 is 𝑂 (ℎ).
Proof. For each iteration of Line 16 in Algorithm 2, we traverse the path from 𝑦 to the root,

which takes 𝑂 (ℎ) time. Based on Lemma 5.2, the expected number of visits to non-tree edges is

bounded by 2. Therefore, the expected time complexity of Algorithm 2 is 𝑂 (ℎ). □

6 constant-timeQuery Processing
The ideas of D-Tree and our improved version in Section 4 are to maintain a near balanced spanning

tree since the query time depends on the depth of each vertex. In this section, we eliminate the

dependency and further improve the query efficiency to almost-constant. Meanwhile, we

bound the same theoretical running time for edge insertion and edge deletion.
6.1 Utilizing the Disjoint-Set Structure
Our idea is inspired by the disjoint-set data structure [25]. It provides two operators, Find and

Union, which are presented in Algorithm 3. Find returns an id for the set containing the input

item, and Union merges the sets of two given items. The structure maintains each set as a tree

and uses the tree root to represent the set. Two crucial optimizations are adopted. The first is path

compression. When path compression is applied, in the path from a query item to the root in

Find, the algorithm connects every visited item to the root directly. The second operation is union

by size. Given that the 𝑠𝑖𝑧𝑒 of each item in Union represents the number of items in the tree, we

always merge the smaller tree with the larger tree. With these two optimizations, the amortized

time complexity for both Find and Union is 𝑂 (𝛼 (𝑛)), where 𝑛 is the number of items, and 𝛼 () is
the inverse Ackermann function. Due to the extremely slow growth rate of 𝛼 (), it remains less

than 5 for all possible values of 𝑛 that can be represented in the physical universe.

Using disjoint set is a fundamental method to detect all connected components and is also natural

to deal with scenarios with only edge insertions. However, given an edge deletion disconnecting

two connected components, it is hard to split a set based on the disjoint-set structure. Identifying

all vertices belonging to one of the resulting connected components is challenging. We define

DS-Tree as the tree structure maintained in Algorithm 3. Note that some additional attributes will be

maintained for each vertex in DS-Tree, which are used for edge deletion and will be introduced later.
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Algorithm 3: Disjoint-set operators
1 Procedure Find(𝑥)
2 if 𝑥 .𝑝𝑎𝑟𝑒𝑛𝑡 ≠ 𝑥 then
3 𝑥 .𝑝𝑎𝑟𝑒𝑛𝑡 ← Find(𝑥);
4 return 𝑥 .𝑝𝑎𝑟𝑒𝑛𝑡 ;

5 return 𝑥 ;

6 Procedure Union(𝑥,𝑦)
7 𝑥 ← Find(𝑥);
8 𝑦 ← Find(𝑦);
9 if 𝑥 = 𝑦 then return;

10 if 𝑥 .𝑠𝑖𝑧𝑒 > 𝑦.𝑠𝑖𝑧𝑒 then swap(𝑥,𝑦);
11 𝑥 .𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑦;

12 𝑦.𝑠𝑖𝑧𝑒 ← 𝑥 .𝑠𝑖𝑧𝑒 + 𝑦.𝑠𝑖𝑧𝑒;

Our idea is to simultaneously maintain a ID-Tree and a DS-Tree for each connected component.

We utilize DS-Tree to improve the performance of query processing and edge insertion. We update

DS-Tree with the help of ID-Tree for edge deletion.

We introduce the data structure of DS-Tree in Section 6.2. In Section 6.3, we study the details of

several DS-Tree operations which serve in our final algorithms for edge insertions and deletions.

Details of the final query processing algorithmwill also be covered in Section 6.3. Then, we introduce

our final edge insertion algorithm and edge deletion algorithm in Section 6.4 and Section 6.5,

respectively. The complexity analysis of these two algorithms is also covered there.

6.2 DS-Tree Structure
Optimal Children Maintenance in DS-Tree.We discuss the data structure of DS-Tree in this

subsection. We start by considering the attributes of each vertex in DS-Tree. For an edge deletion,

it may require removing several vertices from DS-Tree, and we need to connect all children for

each removed vertex back to the tree. Unlike D-Tree, tree edges in DS-Tree may not be graph edges,

which makes searching children from scratch (like Line 9 of Algorithm 2) not feasible. Therefore, a

data structure to maintain children of each vertex in DS-Tree is expected to support the following

tasks.

- Task 1. Deleting a vertex 𝑢 from children of 𝑣 ;

- Task 2. Scanning all children of 𝑢;

- Task 3. Inserting a vertex 𝑢 into the children set of 𝑣 .

The first two tasks are required when we remove 𝑢 from a DS-Tree. The last task is required

when we delete the parent of 𝑢 or take the union of two DS-Trees rooted in 𝑢 and 𝑣 , respectively. A

straightforward idea is to use a hash table. However, even if a large number of buckets are used

to achieve a high efficiency for insertion and deletion, scanning all children in the second task

is time-consuming. To overcome this challenge, we adopt a doubly-linked list (DLL) structure to

maintain all children for each vertex in DS-Tree. Specifically, we use a structure called DSnode to
represent each vertex in DS-Tree and maintain the following attributes for DSnode.
Note that we do not maintain the subtree size for each vertex. This is because we only use the

subtree size of the DS-Tree root when linking two DS-Trees. The subtree size of a vertex 𝑢 in

DS-Tree is the same as that in ID-Tree if 𝑢 is the root in both trees. The children attribute points to

the first child in DLL. To remove a child 𝑢, we connect the previous child (DSnode.𝑝𝑟𝑒) and the
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- 𝑖𝑑 // id of the corresponding vertex;

- 𝑝𝑎𝑟𝑒𝑛𝑡 // pointer to the parent’s DSnode in 𝐷𝑆-tree;

- 𝑝𝑟𝑒 // previous pointer in the DLL of the parent’s children;

- 𝑛𝑒𝑥𝑡 // next pointer in the DLL of the parent’s children;

- 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 // start position of the DDL of children.

next child (DSnode.𝑛𝑒𝑥𝑡 ) in DLL. To insert a child 𝑢, we add 𝑢 to the beginning of the DLL. The

following lemma holds.

Lemma 6.1. Inserting a new child or deleting an existing child for a vertex in DS-Tree is completed
in 𝑂 (1) time.

For task 2, it is clear to see that all children can be scanned following the DLL, and the time only

depends on the number of children, which is also optimal.

6.3 DS-Tree Operators
We introduce several operators to manipulate DS-Trees which are used in our final algorithms. We

add a suffix DS to distinguish certain operators from those of D-Tree. All operators are presented

in Algorithm 4, and we will show that all of them can be implemented in amortized constant time,

which is optimal.

UnlinkDS and LinkDS. We start with operators that are straightforward to be implemented.

Changing the parent of a tree node often happens in manipulating DS-Trees, and a typical scenario

is the path compression optimization to find the root in a disjoint-set tree (i.e., all visited vertices

are assigned as the children of the root). UnlinkDS disconnects the vertex 𝑢 from its parent. It

removes 𝑢 from the children DLL of its parent. For ease of presentation, we add virtual vertices

at the beginning and end of DLL respectively. In this way, the 𝑝𝑟𝑒 pointer (Line 2) and the 𝑛𝑒𝑥𝑡

pointer (Line 3) are not Null.
LinkDS adds a vertex to the children DLL of the other vertex and is a simplified version of Union.

In our final update algorithms, we identify the root and the size of each DS-Tree before invoking

LinkDS. Therefore, unlike the original Union operator, we do not need to execute Find to find the

root of each vertex and compare the size of two trees. We set 𝑣 as the parent of 𝑢 in Line 8 and

add 𝑢 to the children DLL of 𝑣 . For ease of presentation, we add virtual vertices at the beginning

and end of DLL respectively. DSnode(𝑣).𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (Line 9) points to the virtual beginner of children

DLL of 𝑣 . In this way, the 𝑝𝑟𝑒 pointer (Line 11) and the 𝑛𝑒𝑥𝑡 pointer (Line 12) are not Null. The
strategy of LinkDS is consistent with the Union operator of disjoint-set structure [25]. The time

complexity of both UnlinkDS and LinkDS is 𝑂 (1).
FindDS for Query Processing. Based on UnlinkDS and LinkDS, we reorganize the Find operator

in the original disjoint set based on the attributes of DSnode. The operator is executed to find the

root of each vertex. Recall that in our query processing algorithm for ID-Tree, nothing needs to be

maintained. Therefore, we can process queries based on DS-Tree and do nothing for D-Tree. Our

final query processing algorithm is called DND-Query. It invokes FindDS to find the root of each

vertex and identifies if they are the same. The theoretical querying time is summarized below.

Theorem 6.2. The amortized time complexity of DND-Query for connectivity query processing is
𝑂 (𝛼 (𝑛)), where 𝛼 (𝑛) is the inverse Ackermann function of the number of vertices 𝑛 in the graph.

Proof. The strategy ofDND-Query is consistent with the Find operator of Disjoint-Set structure
[25]. DND-Query has the same time complexity as Find. □

Given that 𝛼 (𝑛) < 5 as mentioned earlier, this makes an amortized constant time for our query

processing algorithm in practice.

Isolate. The Isolate operator deletes a vertex from a DS-Tree. A DS-Tree may require to be split

into two trees for edge deletion. To this end, we Isolate all vertices belonging to the smaller ID-Tree
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Algorithm 4: DS-Tree operators
1 Procedure UnlinkDS(𝑢)
2 DSnode(𝑢).𝑝𝑟𝑒.𝑛𝑒𝑥𝑡 ← DSnode(𝑢).𝑛𝑒𝑥𝑡 ;
3 DSnode(𝑢).𝑛𝑒𝑥𝑡 .𝑝𝑟𝑒 ← DSnode(𝑢).𝑝𝑟𝑒;
4 DSnode(𝑢).𝑝𝑎𝑟𝑒𝑛𝑡 ← DSnode(𝑢);
5 DSnode(𝑢).𝑝𝑟𝑒 ← Null;
6 DSnode(𝑢).𝑛𝑒𝑥𝑡 ← Null;

7 Procedure LinkDS(𝑢, 𝑣)
/* union without find and comparing size */

/* the input satisfies 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑢) ≤ 𝑠𝑡_𝑠𝑖𝑧𝑒 (𝑣) */

/* union two DS-Trees */

8 DSnode(𝑢).𝑝𝑎𝑟𝑒𝑛𝑡 ← DSnode(𝑣);
/* add 𝑢 to the new DLL */

9 DSnode(𝑢).𝑝𝑟𝑒 ← DSnode(𝑣).𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛;
10 DSnode(𝑢).𝑛𝑒𝑥𝑡 ← DSnode(𝑣).𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑛𝑒𝑥𝑡 ;
11 DSnode(𝑢).𝑝𝑟𝑒.𝑛𝑒𝑥𝑡 ← DSnode(𝑢);
12 DSnode(𝑢).𝑛𝑒𝑥𝑡 .𝑝𝑟𝑒 ← DSnode(𝑢);

13 Procedure FindDS(𝑢)
14 if DSnode(𝑢).𝑝𝑎𝑟𝑒𝑛𝑡 ≠ DSnode(𝑢) then
15 𝑟𝑜𝑜𝑡 ← FindDS(DSnode(𝑢).𝑝𝑎𝑟𝑒𝑛𝑡 .𝑖𝑑);
16 UnlinkDS(𝑢);
17 LinkDS(𝑢, 𝑟𝑜𝑜𝑡);
18 return 𝑟𝑜𝑜𝑡 ;

19 return 𝑢;

20 Procedure Isolate(𝑢)
/* assign children of 𝑢 to the root */

21 𝑟𝑜𝑜𝑡𝑢 ← FindDS(𝑢);
22 UnlinkDS(𝑢);
23 foreach child𝑤 of 𝑢 in 𝐷𝑆-Tree do
24 UnlinkDS(𝑤);
25 LinkDS(𝑤, 𝑟𝑜𝑜𝑡𝑢);

26 Procedure ReRootDS(𝑢)
27 𝑟𝑜𝑜𝑡𝑢 ← FindDS(𝑢);
28 swap(DSnode(𝑢),DSnode(𝑟𝑜𝑜𝑡𝑢));
29 DSnode(𝑢).𝑖𝑑 ← 𝑢;

30 DSnode(𝑟𝑜𝑜𝑡𝑢).𝑖𝑑 ← 𝑟𝑜𝑜𝑡𝑢 ;

from the old DS-Tree and union all vertices which are isolated as a new DS-Tree. Instead of adding

all children of 𝑢 to its parent in the pseudocode, we first do a path compression and find the root of

the DS-Tree. Then, we link each child to the root by executing the LinkDS operator (Line 25).

Lemma 6.3. The amortized time complexity of Isolate is 𝑂 (1).
Proof. The lemma is straightforward since the number of all children in the tree is 𝑛, and the

amortized children number of each vertex is 𝑂 (1). □
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Fig. 5. An example of Isolate(𝑢).
The Isolate operation removes a given vertex 𝑢 from its connected component. In the operation,

all children of 𝑢 are added back to the DS-Tree as the children of the root, which guarantees

the children are not removed. Note that given the path compression optimization, the children

number of the DS-Tree root is very large, and that for all other tree vertices is very small. Our
final algorithm for edge deletion will guarantee to never execute Isolate for the root.

Example 6.4. An example of executing Isolate is shown in Figure 5. Assume that 𝑟 is the DS-Tree

root. To delete the vertex 𝑢, we first connect the previous vertex and the next vertex in the doubly

linked list. Then we connect the children of 𝑢 to the root 𝑟 .

RerootDS. The ReRootDS operator is crucial to keep the DS-Tree root consistent with that of

ID-Tree. Several potential ways exist to reroot DS-Tree. One way is to rotate the DS-Tree similar to

the ReRoot operator in ID-Tree where all tree edges do not change. Given the new root 𝑢, another

way is to first delete 𝑢 from the tree by invoking the Isolate operator and then assign 𝑢 as the

parent of the original root by invoking the LinkDS operator. However, both of the above methods

increase the depth of vertices in DS-Tree, which reduces the efficiency of FindDS and may even

break the amortized constant time complexity of FindDS.
Motivated by this, our method to reroot DS-Tree is to replace the new root 𝑢 with the original

root 𝑟𝑜𝑜𝑡𝑢 directly. By replacement, we mean to exchange the children and the parent of𝑢 and 𝑟𝑜𝑜𝑡𝑢 .

Note that the parent attribute of every child of 𝑟𝑜𝑜𝑡𝑢 will be pointed to 𝑢. Even if the amortized

number of children for each tree vertex is 𝑂 (1) as proved in Lemma 6.3, the size of all children

of 𝑟𝑜𝑜𝑡𝑢 can be very large. To improve the reroot efficiency, we store a DSnode pointer instead
of a vertex id in the parent attribute for each DSnode. In this way, as shown in Lines 28–30 of

Algorithm 4, we swap the corresponding DSnode objects of two vertices, and update their id for

the new vertex. The time complexity of ReRootDS is 𝑂 (1).

6.4 The Final Edge Insertion Algorithm
For edge insertion, we Union two DS-Trees if a tree edge is inserted to connect two connected

components. Additionally, we propose an optimization to improve the performance of both insertion

and deletion. The optimization keeps the root of DS-Tree the same as that of ID-Tree. It benefits

the following operations in edge insertion and deletion, respectively.

(a) Avoid searching ID-Tree root. As shown in Algorithm 1, we need to search the root of ID-Tree

frequently. Given that finding the ID-Tree root takes amortized constant time, keeping their

roots consistent speeds up the edge insertion significantly.

(b) Avoid deleting ID-Tree root. In Line 3 of Algorithm 2, we split the subtree 𝑇𝑢 of 𝑢 from the

original tree if a replacement edge is not found. In our final edge deletion framework discussed

later, we will delete all vertices in 𝑇𝑢 from DS-Tree. Keeping the two roots of ID-Tree and

DS-Tree consistent guarantees that the DS-Tree root is never deleted. An immediate challenge
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Algorithm 5: DND-Insert
Input: an existing edge (𝑢, 𝑣) and the DND-Trees index

Output: the updated DND-Trees

1 𝑟𝑜𝑜𝑡𝑢 ← FindDS(𝑢);
2 𝑟𝑜𝑜𝑡𝑣 ← FindDS(𝑣);
3 Lines 3–14 of Algorithm 1;

4 ReRoot(𝑢);
5 LinkDS(𝑟𝑜𝑜𝑡𝑢, 𝑟𝑜𝑜𝑡𝑣);
6 Link(𝑢, 𝑣, 𝑟𝑜𝑜𝑡𝑣);

Algorithm 6: DND-Delete
Input: an existing edge (𝑢, 𝑣) and the DND-Trees index

Output: the updated DND-Trees

1 (𝑢, 𝑟𝑜𝑜𝑡𝑣, 𝑠𝑢𝑐𝑐, 𝑆) ← ID-Delete(𝑢, 𝑣);
2 ReRootDS(𝑟𝑜𝑜𝑡𝑣);
3 if 𝑠𝑢𝑐𝑐 then return;
/* 𝑢 is the root of the smaller ID-Tree */

4 Isolate(𝑢);
5 𝑆 ← 𝑆 \ {𝑢};
6 foreach𝑤 ∈ 𝑆 do
7 Isolate(𝑤);
8 LinkDS(𝑤,𝑢);

after deleting the DS-Tree root is to identify a new root. Then we need to link all children of 𝑢

back to the new root. Due to the path compression optimization, the number of children is

extremely large. Connecting all children of the DS-Tree root to the new root is costly.

We present the final algorithm for edge insertion in Algorithm 5. The final index is called DND-Trees

(short for ID-Tree and DS-Tree), and the insertion algorithm is called DND-Insert. In Lines 1–2,

we find the root of each vertex in DS-Tree by invoking FindDS. Given that roots of two tree are

consistent, fining root in DS-Tree is much more efficient. For non-tree edge insertion, we reorganize

the ID-Tree same as Algorithm 1. Given that the tree root does not change, we do nothing for DS-

Tree. For tree edge insertion, we need Union two DS-Trees given that two connected components

are connected. After Line 14 of Algorithm 1, we already know 𝑟𝑜𝑜𝑡𝑢 and 𝑟𝑜𝑜𝑡𝑣 are roots of two

original DS-Trees and the subtree size of 𝑟𝑜𝑜𝑡𝑢 is smaller than that of 𝑟𝑜𝑜𝑡𝑣 . Note that in Line 4,

we ReRoot the ID-Tree of 𝑟𝑜𝑜𝑡𝑢 to 𝑢 but do not keep the root of DS-Tree consistent. This would

not break the correctness since the tree will be merged into the larger tree, and the root of the

final DS-Tree will be correct. In Line 5, we invoke LinkDS to assign 𝑟𝑜𝑜𝑡𝑢 as the child of 𝑟𝑜𝑜𝑡𝑣 in

DS-Trees which essentially merges two DS-Trees. Finally, we link ID-Trees as before. Given the

implementation details of all DS-Tree operators, we have the following theorem.

Theorem 6.5. Algorithm 5 has the same running time complexity as Algorithm 1.

6.5 The Final Edge Deletion Algorithm
Recall that in Algorithm 2 for edge deletion, we first unlink the ID-Tree. After Line 4 of Algorithm 2,

𝑢 is the root of the smaller tree for searching replacement edge, and 𝑟𝑜𝑜𝑡𝑣 is the root of the larger

tree. To update the corresponding DS-Tree, we still consider two cases based on the existence of

the replacement edge. If a replacement edge is found, the connected component does not update,
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Dataset name 𝑛 𝑚 Type ℎ𝐼𝐷−𝑇𝑟𝑒𝑒 ℎ𝐷−𝑇𝑟𝑒𝑒 |𝑆 | #𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑎𝑥𝑑

dynamic-dewiki
1

DE 2,166,670 86,337,879 Temporal, Hyperlink 2.828 2.778 1.015 1.001 4

stackoverflow
2

ST 2,601,978 63,497,050 Temporal, QA 2.509 2.445 1.037 1.005 5

soc-bitcoin
3

BI 24,575,383 122,948,162 Temporal, Transaction 5.384 6.350 1.133 1.477 8

soc-flickr-growth
3

FL 2,302,926 33,140,017 Temporal, Social 1.163 1.190 1.424 1.055 6

edit-enwiki
1

EN 50,757,444 572,591,272 Temporal, Edit 2.472 2.160 1.008 1.002 6

delicious-ti
1

TI 38,289,742 301,183,605 Temporal, Feature 2.600 2.592 1.051 1.029 6

delicious-ui
1

UI 34,611,304 301,186,579 Temporal, Interaction 3.550 3.321 1.012 1.018 5

yahoo-song
1

YA 1,625,953 256,804,235 Temporal, Rating 2.197 2.554 1.000 1.000 3

LiveJournal
1

LI 4,846,610 42,851,237 Unlabeled, Social 3.911 4.272 1.068 1.002 3

twitter_mpi
1

TM 52,579,683 1,614,106,187 Unlabeled, Social 2.353 2.462 1.015 1.000 2

twitter-2010
1

T2 41,652,230 1,202,513,046 Unlabeled, Social 2.334 3.470 1.013 1.000 2

friendster
1

FR 124,836,180 1,806,067,135 Unlabeled, Social 1.855 2.640 1.047 1.003 2

uk-2007
4

UK 133,633,040 4,663,392,591 Unlabeled, Hyperlink 4.003 5.249 1.818 1.002 3

CTR
5

CT 14,081,817 16,933,413 Unlabeled, Road 2,356.592 1,883.230 3.279 6.541 3

W
5

W 6,262,105 7,559,642 Unlabeled, Road 1,410.453 1,404.410 4.194 10.840 3

road-usa
3

US 23,947,348 28,854,312 Unlabeled, Road 2,864.871 2,726.730 3.202 6.791 3

Table 2. The Description of Dataset. ℎ is the average vertex depth in different spanning trees.𝑚 is the number
of edges and 𝑛 is the number of vertices. |𝑆 | is the average size of S in Algorithm 6. #𝑠𝑒𝑎𝑟𝑐ℎ is the actual
average number of iterations which is mentioned in Lemma 5.2.𝑚𝑎𝑥𝑑 is the maximum depth of vertex on
DS-tree during query phase.

and the tree root is 𝑟𝑜𝑜𝑡𝑣 in Line 23 of Algorithm 2. We only reroot the DS-Tree to 𝑟𝑜𝑜𝑡𝑣 in this

case. If a replacement edge is not found, we need to split the original DS-Tree into two trees for

two resulting ID-Trees. To this end, our idea is to delete every vertex belonging to the subtree of 𝑢

in ID-Tree from the DS-Tree. Then, we Union all deleted vertices and form the new DS-Tree. An

immediate challenge is how to identify all vertices belonging to the subtree of 𝑢 in ID-Tree. We

discuss this in the following lemma.

Lemma 6.6. Given 𝑢 in Line 5 of Algorithm 2, if no replacement edge is found (i.e., 𝑠𝑢𝑐𝑐 turns false),
𝑆 is the set of all vertices in the subtree rooted in 𝑢 when the algorithm terminates.

Based on Lemma 6.6, we present our final deletion algorithm, called DND-Delete, for DND-Trees
index in Algorithm 6. After updating ID-Trees, we first reroot the DS-Tree to 𝑟𝑜𝑜𝑡𝑣 in Line 2. Given

𝑠𝑢𝑐𝑐 = true in Line 3, we terminate the algorithm since the connected component does not update.

Otherwise, we delete all vertices in 𝑆 from the DS-Tree in Lines 4–8. We first delete 𝑢 since 𝑢 will

be the root of the new DS-Tree. Then, we iteratively delete each vertex𝑤 from 𝑆 and link𝑤 to 𝑢.

𝑆 contains all vertices in the subtree of 𝑢 in the ID-tree. Given that the parent of 𝑢 is 𝑟𝑜𝑜𝑡𝑣 (Line

1), 𝑟𝑜𝑜𝑡𝑣 is not in 𝑆 . In Line 2 of Algorithm 6, we update the root of the disjoint set tree to 𝑟𝑜𝑜𝑡𝑣 .

Therefore, we never Isolate the root of the disjoint-set tree. From the perspective of disjoint set,

we perform the Union operation on 𝑢 and𝑤 in Line 8. As introduced in Section 6.4, LinkDS(𝑤,𝑢)
directly assigns𝑤 as a child of 𝑢 since the subtree size of 𝑢 is guaranteed larger than that of𝑤 in

DS-Tree and both of them are roots before Union.

Theorem 6.7. Algorithm 6 has the same expected running time complexity as Algorithm 2.

Proof. On the basis of Algorithm 2, Algorithm 6 also needs to traverse all the vertices in 𝑆 to

decompose the DS-tree. Since all DS-Tree operations are 𝑂 (1), the added operation is bounded by

|𝑆 |. Algorithm 2 is also bounded by |𝑆 |, so the complexity of the two deletion operations is still the

same. □

7 Performance Studies
Setup. All algorithms are implemented in C++ and compiled with O3 level optimization. The

experiments are conducted on a single machine with Intel Xeon Gold 6248 2.5GHz and 768GB RAM.

All results are averaged over ten runs on the same machine.
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Fig. 6. Query time of unlabeled graphs.
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Fig. 7. Delete time of unlabeled graphs.
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Fig. 8. Insert time of unlabeled graphs.

Dataset. We evaluate sixteen real datasets from different domains (Table 2). These datasets can be

found at konect
1
, Stanford Large Network data set Collection

2
, Network Repository

3
, LAW

4
and

DIMACS
5
. Eight out of sixteen datasets are temporal graphs, and the rest are unlabeled graphs.

Our algorithms can be used for recommendation in social networks [16], transaction analysis in

trading networks [14], path planning in road networks [5], etc.

Competitors. We evaluate the performance of connectivity queries and update operations for the

following methods:

- DND-Trees. Our final algorithm includes all optimizations.

- ID-Tree. Our algorithm shown in section 4.

- D-Tree. The algorithm proposed by Chen et al. [3]. The source code from [3] is in Python. We

re-implement it in C++.

- ID-TDSA. A baseline to combine ID-Tree and the disjoint set. When a tree edge is deleted in

ID-Tree and no replacement edge exists, we reconstruct the whole disjoint set.

- ID-TDSB. The other baseline to combine ID-Tree and the disjoint set. When a tree edge is deleted

in ID-Tree and no replacement edge exists, we reconstruct the disjoint set for all vertices in the

old connected component containing the deleted edge.

- HDT. The algorithm proposed by Holm et al. [8, 9]. The code is from an experimental paper [11].

7.1 Performance in Unlabeled Graphs
For a general unlabeled graph, we first build an index with all the edges of the entire dataset. Then

we randomly delete 100, 000 edges and then insert those 100, 000 edges back into the graph. We

calculate the average running time for insertions and deletions, respectively. For query efficiency,

1
http://konect.cc/networks/

2
https://snap.stanford.edu/data/

3
https://networkrepository.com/

4
http://law.di.unimi.it/datasets.php

5
http://www.diag.uniroma1.it/challenge9/download.shtml
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Fig. 9. Memory of unlabeled graphs.

we randomly generate 50, 000, 000 vertex pairs and identify whether they are connected. Due to

the large average vertex depth of the road network, queries are not efficient. For them we query

100, 000 times. We calculate the average time of a query operation. For any of the test cases in our

paper, DND-Trees can complete the entire operation in less than 1, 000 seconds. We do not report

the results of tests that take longer than 12 hours. A case executes for more than 12h is mostly

due to its very low deletion efficiency, indicating that the algorithm is not suitable for processing

large-scale data. All subsequent experiments also follow this setting.

Query Processing. Figure 6 shows the average query time in 11 unlabeled graphs. The query

efficiency of DND-Trees is much higher than that of ID-Tree and D-Tree, and very close to ID-TDSA

and ID-TDSB. For the instance of US, DND-Trees is two orders of magnitude faster. The efficiency

of both ID-Tree and D-Tree is related to the average depth. Their query time is different but the

overall query efficiency of ID-Tree and D-Tree is similar.

Deletion. Figure 7 shows the average time of the edge deletion. On all datasets, the deletion

efficiency of DND-Trees is significantly higher than that of D-Tree. Two orders of magnitude

speedup is achieved on TM, UK and US. We can also see that the additional cost of DND-Trees

beyond ID-Tree is marginal, which supports Theorem 6.5 and Theorem 6.7. ID-TDSA and ID-TDSB

are much slower than DND-Trees, because they need to visit nearly all the tree edges in ID-Tree.

Insertion. Figure 8 shows the average time of edge insertion. Our final algorithm is much faster

than D-Tree. Note that in certain small datasets (LI and FR), DND-Trees is a little slower than

ID-Tree. This is because when the average depth of the ID-Tree itself is relatively small, although the

DS-Tree speeds up the root-finding operation, additional time is required to maintain the DS-Tree.

Memory. Figure 9 shows the memory usage. Compared to D-Tree, ID-Tree does not need to

maintain children and non-tree neighbors and its memory is smaller. Compared to ID-Tree, DND-

Trees include DS-Tree structure and need a little more memory.

Different types of update operations. Figure 10 shows the efficiency of different types of update

operations (inserting tree edges, inserting non-tree edges, deleting tree edges and deleting non-tree

edges). We first initialize the spanning tree based on all edges in the dataset and obtain the set

of tree edges and the set of non-tree edges. Next, we delete all non-tree edges and calculate the

efficiency of non-tree edge deletion. Then, all tree edges are deleted, and the efficiency of tree

edge deletion is calculated. Next, we insert all tree edges and calculate the efficiency of tree edge

insertion. Finally, we insert all non-tree edges and calculate the efficiency of non-tree edge insertion.

We can find that the update efficiency of tree edges is faster than that of non-tree edges, and the

gap increases when ℎ increases.

7.2 Performance in Sliding Windows
We investigate three algorithms over different sizes of sliding windows in temporal graphs. For

each temporal graph, we first compute the time span for the dataset. Then we vary the window size

in 5%, 10%, 20%, 40% and 80% of its time span. We insert all edges in chronological order. When the

time difference between the inserted new edge and the oldest edge in the window is greater than

the time window size, the old edge is deleted. We record the average time of a sliding operation

(inserting a new edge and deleting an expired edge). We also randomly query 50,000,000 times in
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Fig. 10. Update time of tree and non-tree edges.
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Fig. 11. Query time (vary window size).
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Fig. 12. Query time in different windows.
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Fig. 13. Update time (vary window size).

the last time window and calculate the average query time. We report the representative datasets

given the space limitation.

Query processing by varying window size. Figure 11 shows the average query time of different

window sizes. As the time window size increases, the query time of both D-Tree and ID-Tree

increases. However, the query time of DND-Trees is stable given its constant query time. Figure 12

shows the average query time in five different sliding windows. Due to space constraint, we chose

dataset BI as an example. We select 5 windows evenly for querying during the sliding process,

depending on the window size. Specifically, when the window size is 40%, we select the following

five windows: 0%–40%, 15%–55%, 30%–70%, 45%–85% and 60%–100%. Some of the earlier windows

have fewer temporal edges, and their queries are more efficient, as influenced by the distribution of

temporal edges. However, their query efficiency stabilizes when there are enough temporal edges

in the window.
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Updating by varying window size. Figure 13 shows the average update time of different window

sizes. The DND-Trees and ID-Tree are much faster than D-Tree. As the window size increases,

the time variation of all three algorithms is not obvious. For the sliding window updates, deleting

an edge is the dominating cost because of searching the replacement edge. As the window size

increases, the number of edges increases, and the graph becomes denser. As a result, the probability

of deleting a non-tree edge is higher. Compared with the case of deleting a tree edge, deleting a

non-tree edge is much more efficient.

7.3 Average depth of spanning tree
The efficiency of all algorithms is related to the average tree depth ℎ except for our final query

algorithm. ℎ𝐼𝐷−𝑇𝑟𝑒𝑒 and ℎ𝐷−𝑇𝑟𝑒𝑒 in Table 2 show the average tree depths in different graphs.𝑚𝑎𝑥𝑑

in Table 2 shows the maximum depth of vertex on DS-Tree during query phase. For temporal

datasets, they refer to the average depth where the time window is set to 40%. Even though we

relax certain heuristics to reduce average tree depth, the result shows that our tree depth is still

competitive. Furthermore, experimental results show that𝑚𝑎𝑥𝑑 is very small, and the depth of the

DS-Tree can be considered as a constant.

7.4 Experimental Analysis of Delete Operation
Table 2 reports the average value of |𝑆 | in Algorithm 6 when 𝑠𝑢𝑐𝑐 is 𝑡𝑟𝑢𝑒 in Line 3. For temporal

datasets, ℎ refers to the case where the time window is set to 40% of the time span. Compared

to ID-Tree, the additional cost of DND-Trees appears when no replacement edge can be found.

We disconnect the DS-Tree as shown in Algorithm 6. The cost depends on the size of 𝑆 . From

Table 2, |𝑆 | is very small which supports our theoretical results and proves that the additional cost

is negligible. We also report the actual average number of iterations of Line 9 in Algorithm 2. As

shown in Table 2, #𝑠𝑒𝑎𝑟𝑐ℎ is small and it is in line with Lemma 5.2. This demonstrates the high

efficiency of our edge deletion operation.

8 Related Work
Connectivity inUndirectedGraphs. Initially, connectivity algorithmswere designed for updating

spanning trees either for edge insertions [24] or for edge deletions [22]. Henzinger and King

proposed [6, 7] amethod of representing spanning trees through Euler tours [26]. It adds information

to enable early termination of the search for a replacement edge. Holm et al. [8, 9] proposed a new

structure that makes the update efficiency of the index reach 𝑂 (log2 𝑛). Huang et al. [10] further
theoretically reduced the time complexity to 𝑂 (log𝑛(log log𝑛)2). Chen et al. [3] introduce a new

data structure, called the dynamic tree (D-Tree). A detailed analysis of D-Tree can be found in

Section 3.3. Connectivity maintenance in streaming graphs is studied in [23].

Connectivity/reachability in Directed Graphs.Much of the prior research on reachability of

directed graphs [2, 4, 12, 28, 33] focuses on labeling schemes. Those approaches are typically not

suited for undirected graphs. They can be classified into two main categories: interval labeling and

2-HOP labeling [13]. Those methods can also be modified for dynamic graphs. Optimal Tree Cover

(Opt-TC) [1] is based on interval labeling. It is one of the initial works to tackle the incremental

maintenance of the index in dynamic graphs. Based on 2-HOP labeling, some incremental mainte-

nance methods are proposed in [2, 20, 21]. However, they do not support efficient delete operations.

A recent data structure for labeling, known as DBL [13], does support undirected and directed

graphs. It only allows edge insertions in graphs, and the construction of DBL is time-consuming

due to the need of performing a BFS on the corresponding connected components.

Other types of graphs. There are many related studies on other types of graphs related to

connectivity queries. In temporal graphs, the span-reachability query aims to answer the reachability
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of any time window [29, 30]. Qiao et al. proposed a reachability algorithm on weighted graphs [19].

Reachability in distributed systems is studied in [32]. Label constrained reachability query is to

judge whether there is a path between two points that only contains a subset of given labels, which

is studied in [18, 31].

9 Conclusion
In this paper, we propose a new data index for solving connectivity queries in full dynamic graphs.

We streamline the data structure of the state-of-the-art algorithm and reduce the time complexity of

both insertion and deletion operations. We propose a new strategy to search for replacement edge in

edge deletion. Furthermore, we propose a new approach that combines the advantages of spanning

tree and disjoint-set tree. Our final algorithm achieves the constant query time complexity and also

significantly improves the theoretical running time in both edge insertion and edge deletion. Our

performance studies on real large datasets show considerable improvement in our algorithms.
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